Pojedinosti o zapisu

Three-Level Parallel J-Jacobi Algorithms for Hermitian Matrices

FULIR

Vidi informacije o repozitoriju  Pogledaj original
 
Polje Vrijednost
 
Relacija http://fulir.irb.hr/257/
http://www.journals.elsevier.com/applied-mathematics-and-computation
10.1016/j.amc.2011.11.067
 
Naslov Three-Level Parallel J-Jacobi Algorithms for Hermitian Matrices
 
Autor Singer, Sanja
Singer, Saša
Novaković, Vedran
Davidović, Davor
Bokulić, Krešimir
Ušćumlić, Aleksandar
 
Tema Algebra
Numerical Mathematics
 
Opis The paper describes several efficient parallel implementations of the one-sided hyperbolic Jacobi-type algorithm for computing eigenvalues and eigenvectors of Hermitian matrices. By appropriate blocking of the algorithms an almost ideal load balancing between all available processors/cores is obtained. A similar blocking technique can be used to exploit local cache memory of each processor to further speed up the process. Due to diversity of modern computer architectures, each of the algorithms described here may be the method of choice for a particular hardware and a given matrix size. All proposed block algorithms compute the eigenvalues with relative accuracy similar to the original non-blocked Jacobi algorithm.
 
Izdavač Elsevier
 
Datum 2012-01-01
 
Vrsta resursa Article
PeerReviewed
 
Format (na primjer PDF) application/pdf
 
Jezik en
english
 
Prava
 
Identifikator http://fulir.irb.hr/257/1/00.pdf
Singer, Sanja and Singer, Saša and Novaković, Vedran and Davidović, Davor and Bokulić, Krešimir and Ušćumlić, Aleksandar (2012) Three-Level Parallel J-Jacobi Algorithms for Hermitian Matrices Applied Mathematics and Computation, 218 (9). pp. 5704-5725. ISSN 0096-3003